Identification of sendai virus L protein amino acid residues affecting viral mRNA cap methylation.

نویسندگان

  • Andrea M Murphy
  • Valery Z Grdzelishvili
چکیده

Viruses of the order Mononegavirales all encode a large (L) polymerase protein responsible for the replication and transcription of the viral genome as well as all posttranscriptional modifications of viral mRNAs. The L protein is conserved among all members of the Mononegavirales and has six conserved regions ("domains"). Using vesicular stomatitis virus (VSV) (family Rhabdoviridae) experimental system, we and others recently identified several conserved amino acid residues within L protein domain VI which are required for viral mRNA cap methylation. To verify that these critical amino acid residues have a similar function in other members of the Mononegavirales, we examined the Sendai virus (SeV) (family Paramyxoviridae) L protein by targeting homologous amino acid residues important for cap methylation in VSV which are highly conserved among all members of the Mononegavirales and are believed to constitute the L protein catalytic and S-adenosylmethionine-binding sites. In addition, an SeV L protein mutant with a deletion of the entire domain VI was generated. First, L mutants were tested for their abilities to synthesize viral mRNAs. While the domain VI deletion completely inactivated L, most of the amino acid substitutions had minor effects on mRNA synthesis. Using a reverse genetics approach, these mutations were introduced into the SeV genome, and recombinant infectious SeV mutants with single alanine substitutions at L positions 1782, 1804, 1805, and 1806 or a double substitution at positions 1804 and 1806 were generated. The mutant SeV virions were purified, detergent activated, and analyzed for their abilities to synthesize viral mRNAs methylated at their cap structures. In addition, further studies were done to examine these SeV mutants for a possible host range phenotype, which was previously shown for VSV cap methylation-defective mutants. In agreement with a predicted role of the SeV L protein invariant lysine 1782 as a catalytic residue, the recombinant virus with a single K1782A substitution was completely defective in cap methylation and showed a host range phenotype. In addition, the E1805A mutation within the putative S-adenosylmethionine-binding site of L resulted in a 60% reduction in cap methylation. In contrast to the homologous VSV mutants, other recombinant SeV mutants with amino acid substitutions at this site were neither defective in cap methylation nor host range restricted. The results of this initial study using an SeV experimental system demonstrate similarities as well as differences between the L protein cap methylation domains in different members of the Mononegavirales.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opposing effects of inhibiting cap addition and cap methylation on polyadenylation during vesicular stomatitis virus mRNA synthesis.

The multifunctional large (L) polymerase protein of vesicular stomatitis virus (VSV) contains enzymatic activities essential for RNA synthesis, including mRNA cap addition and polyadenylation. We previously mapped amino acid residues G1154, T1157, H1227, and R1228, present within conserved region V (CRV) of L, as essential for mRNA cap addition. Here we show that alanine substitutions to these ...

متن کامل

A single amino acid change in the L-polymerase protein of vesicular stomatitis virus completely abolishes viral mRNA cap methylation.

The vesicular stomatitis virus (VSV) RNA polymerase synthesizes viral mRNAs with 5'-cap structures methylated at the guanine-N7 and 2'-O-adenosine positions (7mGpppA(m)). Previously, our laboratory showed that a VSV host range (hr) and temperature-sensitive (ts) mutant, hr1, had a complete defect in mRNA cap methylation and that the wild-type L protein could complement the hr1 defect in vitro. ...

متن کامل

The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity.

The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5'-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, w...

متن کامل

Vesicular stomatitis viruses resistant to the methylase inhibitor sinefungin upregulate RNA synthesis and reveal mutations that affect mRNA cap methylation.

Sinefungin (SIN), a natural S-adenosyl-L-methionine analog produced by Streptomyces griseolus, is a potent inhibitor of methyltransferases. We evaluated the effect of SIN on replication of vesicular stomatitis virus (VSV), a prototype of the nonsegmented negative-strand RNA viruses. The 241-kDa large polymerase (L) protein of VSV methylates viral mRNA cap structures at the guanine-N-7 (G-N-7) a...

متن کامل

Nucleotide sequence analysis of the haemagglutinin-neuraminidase gene of Newcastle disease virus.

The nucleotide sequence of the haemagglutinin-neuraminidase (HN) gene of Newcastle disease virus (NDV) has been determined. The HN gene is 2031 nucleotides long, approximately 13.5% of the viral genome. The nucleotide sequence contains a single long open reading frame which would encode a protein of 577 amino acids, with a mol. wt. of 63,149. This is in good agreement with estimates of the mole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 83 4  شماره 

صفحات  -

تاریخ انتشار 2009